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Abstract. Cyber physical production systems (CPPS) focus on increas-
ing the flexibility and adaptability of industrial production systems, sys-
tems that comprise hardware such as sensors and actuators in machines
as well as software controlling and integrating these machines. The re-
quirements of customised mass production imply that control software
needs to be adaptable after deployment in a shop floor, possibly even
without interrupting production. Software architecture plays a central
role in achieving run-time adaptability. In this paper we describe five
architectures, that define the structure and interaction of software com-
ponents in CPPS. Three of them already are already well known and used
in the field. The other two we contribute as possible solution to overcome
limitations of the first three architectures. We analyse the architectures’
ability to support adaptability based on Taylor et al.’s BASE framework.
We compare the architectures and discuss how the implications of CPPS
affect the analysis with BASE. We further highlight what lessons from
“traditional” software architecture research can be applied to arrive at
adaptable software architectures for cyber physical production systems.

Keywords: software architectures · manufacturing · reconfiguration · cyber-
physical production systems · adaptability

1 Introduction

Cyber Physical Systems (CPS) tightly interweave software and physical com-
ponents for integrating computation, networking, and physical processes in a
feedback loop. In this feedback loop, software influences physical processes and
vice versa. CPS in the manufacturing context are referred to as Cyber Physi-
cal Production Systems (CPPS). A production cell involving machines, robots,
humans, and transport systems such as pick and place units are examples of a
CPPS; Not considered are CPS in general: drones, smart buildings, or medical
devices. CPPS increase the flexibility and adaptability of industrial production
systems which enables reconfiguration of a physical plant layout with little effort
and to produce a higher variety of products on the same layout.



2 M. Mayrhofer, C. Mayr-Dorn, A. Zoitl, O. Guiza, G. Weichhart, A. Egyed

Software, and specifically, software architecture plays a central role in achiev-
ing this goal. The general capabilities of a production plant depend on its physical
layout. Yet, which capabilities are invoked, in which order and under which con-
ditions is controlled mostly by software or human operators. Thus, fast and cheap
reconfiguration can only happen through software designed to allow for adapt-
ability and flexibility. Over the last decades, the software architecture community
has focused intensely on these concerns in the scope of “traditional” software
systems. In these systems physical aspects such as material flow, manipulation
of physical objects, and physical layout of machines and humans, play no or
only a marginal role. Little of the work in the software architecture community,
however, addresses specifically CPPS. We believe that concepts, approaches, and
ideas from software architecture are invaluable for guiding the design of CPPS.
In return, we would expect that the constraints and characteristics of CPPS
raises awareness in the software architecture community about the implications
stemming from the physical world. Software systems inevitably will become in-
creasingly fused with physical object as we can already observe with systems
described as Smart Devices that are part of the Internet of Things: Software
systems that inherently rely on appropriate software architectures for delivering
long-term benefit to the user.

In the scope of this paper, we focus only on adaptability of CPPS (and re-
fer for other, equally relevant, properties for example to [1] as well as future
work). Adaptability in CPPS comes in two main categories: adaptation of the
software (i.e., machine configuration, process configuration, etc.) and adapta-
tion of the physical layout (i.e., relocating machine, mobile robots, autonomous
guided vehicles). Both categories imply software adaptability (see Section 2 and
3). Whether the goal is assessing the current software architecture of an CPPS
or deciding upon a future CPPS software architecture: in both cases we need a
mechanism to analyse and compare an architecture’s adaptability. Rather than
determining criteria from scratch, we apply the BASE framework introduced by
Oreizy, Medvidovic, and Taylor [2] (Section 4). This framework serves as our
basis for evaluating and comparing CPPS architectures. This paper’s core con-
tribution is a comparison of five architectures for CPPS with an explicit focus on
adaptability: the first three architectures describe the predominant approach to
structuring production systems, the latter two architectures are proposed evo-
lutions for increased adaptability (Section 5). We complete the paper with an
overview of related work (Section 6) and an outlook on future work (Section 7).

2 Background

Similar to software centric companies, manufacturers aim to remain competitive
through a higher innovation rate and an increase in product customization op-
tions. The former requires development processes with potential for both agile
and parallel development. The ultimate goal is lot-size one: the ability to contin-
uously produce ever-changing product configurations on the same product line
at the same low costs as mass production.
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Fig. 1: Simplified PLC architecture
layout

Fig. 2: Direct compilation of control
code

From a software architecture point of view, manufacturers face a major chal-
lenge: the ability to reconfigure the production environment (the machines, pro-
cesses, flows, etc) during production time without impairing production pace. At
the most extreme end, no two products produced are the same and thus every
machine needs involved in the production needs some (software) adaptation for
each product produced.

The foundation of today’s manufacturing systems are programmable logic
controllers (PLCs). PLCs are microcomputers that read data from sensors in the
physical world, process the measurement values, and set output voltages to con-
trol drives, valves, etc. (see Figure 1). They allow the automation of production
steps by controlling a variety of machines across the shop floor: conveyor belts,
robots, raw material processing machines, measuring devices, packaging, etc.
PLC programs consists of function blocks that access and modify variables, and
communicate with other function blocks. The variables map via access paths to
the input/output ports. PLC-specific programming environments primarily aim
to allow efficient and intuitive creation of such control software (mostly control
algorithms). Engineers then compile these programs to the target platform and
download/deploy them to the PLC for execution. Adaptation with this approach
is cumbersome as we will show in subsection 5.1.

Software on PLSs fall into two major categories. First, low level control soft-
ware handles sensor data and actuator signals, that is common for machines of
the same type. This software can be compared to a hardware-centric API and its
implementation: opening/closing a valve, setting the rotation speed of a drive.
We refer to this software as machine-specific code. Second, there is software that
defines parameters for and calls of low-level control, thereby specifying how a
machine must behave on the shop floor: when to open a valve, at which force,
how fast to run a drive. This software is tailored to a product, changing with a
product revision. We, hence, refer to this software as product-specific code.
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3 Motivating Scenario

We present a simple running scenario to provide more insights into the type
of adaptation machines, respectively, software at the shop floor is subject to.
We also use this scenario in subsequent sections to exemplify how the various
architectures allow adaptation. In production automation, a machine rarely acts
independently from other shop floor elements. Typical examples of machine-to-
machine interaction include:
· Parts coming from a stamping machine fall onto a conveyor belt for further
transportation.
· A robot feeds raw material to an automated machine tool (e.g., a milling
machine) and retrieves the processed product.
· A robot holding a part, while a second robot processes it (e.g., spray painting
or welding).

In our scenario, we assume a milling machine controlled with an attached
robot arm for removing processed parts and sorting them on trays. Milling ma-
chine and robot are controlled by one PLC each for sake of simplicity. Even
small scale industrial environments such as the VDMA OPC-UA demonstrator4

are too complex to be described in adequate detail here, let along discussing
its adaptability aspects. Our scenario picks out a part of such a setup that is
sufficiently rich for discussing the impact of software architecture on adaptabil-
ity. Traditionally, with little or no product change, engineers custom tailor the
software for the PLCs specifically for a particular product. Here the software
controls the movement, speed, and force of the milling machine’s cutter as well
as the robot arm’s gripping position, force, and moving path.

With increasing demand for adaptability, two orthogonal adaptation dimen-
sions emerge. On the one hand, we distinguish between the level of adaptation,
and on the other hand we differentiate according to the locality of adaptation.
The former describes adaptation of product-specific vs machine-specific code,
while the latter separates adaptation within a machine invisible to the outside
(local) from adaptations affecting multiple machines (distributed). Adaptation
example for resulting four types include:

Machine-specific / Local Robot manufacturers continuously improve the con-
trol algorithms used in robots and offer frequent updates to existing robots
on the shop floor. Robot manufacturers may introduce new algorithms that
allow for simpler programming of gripping instructions or arm movements.

Product-specific / Local With lot-size one product customizations, the milling
machine might have to cut away at different locations at the raw part, thus
requiring different control parameter for each product.

Product-specific / Distributed With lot-size one production, when the raw
part size changes between products, then (in addition to the milling machine
control software) the robot arm control software needs new parameters for
different gripping positions and movement paths to avoid dropping the pro-
cessed product or bumping it against the milling machine.

4 https://www.youtube.com/watch?v=pUtSA8g9owY
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Machine-specific / Distributed the manufacturer decides to switch among
the milling machines communications capabilities from WiFi to 5G for com-
municating with the robot. Assuming that the robot supports both wireless
standards, now also the robot control software needs to switch connections.

4 Introduction to BASE

The BASE framework developed by Oreizy, Medvidovic, and Taylor defines four
orthogonal criteria to evaluate software systems for their runtime adaptability.
In this section we will summarise these criteria and outline how they match
CPPS. For a detailed explanation of the framework itself refer to [2].

Behavior: How are changes to the behavior represented and applied? Is
behavior limited to a combination of atomic capabilities or is it possible to in-
troduce completely new behavior?
Changes to machine-specific behavior can come in different forms. New func-
tionality (e.g., enabling the milling machine to create curves and arcs) can be
introduced, or existing functionality can be improved (e.g., extending the cur-
rent control algorithm) or replaced. Outdated functionality needs to be removed
to create space for new functionality. Changes to the physical architecture (e.g.,
upgrading to the 5G communication standard) require updates of the drivers.
On the product level, the order of calling the different machine capabilities will
change with every product. In addition, the machine configuration (e.g., cutting
speeds and control parameters on milling machines, gripping forces and tool
tip position on handling robots) needs to be altered, especially when the next
product needs different hardware clamps, drills, etc. What looks like a matter
of configuration is indeed (physical and software) adaptation (see also Sec.5.1).

Asynchrony: How does the update process affect the system’s execution?
Is it necessary to halt the system until the updated has completed, or can it
resume after already after a partial update? How would correct execution be
guaranteed in case of partial updates?
Given the combination of milling machine and handling robot, it might be de-
sirable to update the robot’s motion algorithm or positions for a new product
while it is still handling the current product. In general, this aspect focuses on
the architecture properties that ideally allow elements of a CPPS to be adapted
without negatively affecting others, e.g., enabling the milling machine to start
producing while the robot is still under reconfiguration.

State: How does the system react to changes in state? How does it deal with
altered types? Does a state change require an interrupt of the system’s execution?
In CPPS, we primarily distinguish between managing product-specific state (i.e.,
which steps/phases are complete, which ones are currently active, what needs
to be done next) and machine-specific state (e.g., current drill rotation speed or
robot arm position, whether a product is inside the machine).

Execution context: Constraints on system parts that determine when
adaptations are allowed. E.g. the system has to be in a safe state, heap has to
be empty, system has to be disconnected from surrounding systems, . . . While
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Asynchony focuses on the timing of the ongoing adaptation actions, Execution
context highlights adaptation pre-conditions. For example, does an architecture
allow the algorithm controlling the tools position to be updated during execu-
tion or only when the gripper has released the part? Can we update the cutting
force estimator on the fly? Do we need to shutdown the robot to alter the path
planning? And, if milling machine and robot are working together in one cell,
do we have to halt the milling machine while updating the robot? Might such
dependencies cascade further across several machines, or even whole cells?

In the next section, we apply the BASE framework to evaluate the adapt-
ability of five architectures: three reference architectures and two proposed evo-
lutions thereof.

5 Architecture Analysis

Our goal is assessing how adaptable various CPPS architectures are. Ideally
they are adaptable and response enough to change the behavior in nearly zero
time. Recall, that we distinguish software according to product-specific code and
machine-specific code. A major difference among the discussed architectures is
how intertwined these two code types become at runtime (i.e., on the PLC).
We assess each architecture with BASE in general and outline how the adap-
tation actions from our motivating scenarios may be implemented. Across all
architecture Figures 2 to 6, arrows pointing down indicate transfer of artifacts
(code and/or models) while left to right arrows indicate communication among
machines.

5.1 Hardcoded and Physically Wired

In the most prevalent solutions, the engineer tightly weaves the product-specific
code with the machine-specific code. Machine-specific code is available as include-
files at compile time and is transferred upon each software update to the con-
troller together with the product-specific code. Transfer occurs often at runtime
when an Manufacturing Execution System (MES) deploys the software before
each production process. This process of “direct compilation” is depicted in
Figure 2. Communication among several PLCs occurs primarily via digital pins,
thus hard-wired at the hardware level. This approach matches the strict resource
limitations of cheap PLCs. Control code is translated directly to machine code,
allowing for fast execution and minimizing memory footprint. On the downside,
this architectural style comes with significant limitations:

Behavior: An adaptation implies changes to the software regardless whether
is product-specific code or machine-specific code. To effect the changes, the com-
plete application needs recompilation and retransfer to the PLC. Unsurprisingly,
this approach allows adaptations of existing behavior as well as introduction of
completely new behavior.

Asynchrony: the system is unavailable for the duration of shutting down,
software replacement, and restarting.
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State: Due to wholesale software replacement and system shutdown, any
state has to be persisted prior to shutdown or is lost. No separation of machine-
specific state from product-specific state exists.

Execution context: The machine has to reach a safe state for shutdown.
During software redeployment, therefore, the machine is unable to continue pro-
duction or communicate with connected machines. Shutdown needs to be sig-
nalled to connected systems to allow them to gracefully react to the unavailable
machine undergoing updating. Otherwise connected machines might malfunction
due to missing signal values or alternatively have to be shutdown likewise.

Suppose the machines from our motivating scenario are implemented ac-
cording to this reference architecture, the specific adaptation consequences are
the following. The tight coupling of machine-specific and product-specific code
implies that regardless whether the changes are new or improved gripping algo-
rithms, or whether these are different milling parameter, the respective machine
needs to reach a safe-state and subsequently be shutdown. In addition, the tight
coupling among machines on the hardware level requires stopping (or even shut-
ting down) and later restarting of the non-updated machine as well. An engineer,
hence, needs to consider how the affected machine-under-adaptation is connected
to other machines before effecting an update.

5.2 Central Coordinator Architecture

The Central Coordinator Architecture exhibits a clear separation of machine-
specific logic and product-specific logic. Each PLC exposes its functionality (e.g.,
Function Blocks) as higher-level, composable endpoints (i.e., explicit interfaces).
The endpoints’ granularity depends how the underlying machine is typically
used: i.e., how much fine-grained control is needed. See Figure 3 for an illustra-
tion. The defacto protocol for discovery, endpoint provisioning, and invocation in
CPPS is OPC-Unified Architecture (OPC-UA) [3] (standardized in IEC 62451).
The Centurio Engine [4] is an example for such an architecture.

The machine-specific details behind the exposed endpoints remain opaque
to the production process engineer. Typically only engineers at the machine
manufacturer—or dedicated integration experts that customize the machine for
a particular shop floor—develop and adapt software at the PLC level (including
middleware for exposing endpoints).

An engineer discovers the PLCs’ endpoints and specifies the control-flow of
endpoint invocations and invocation parameter values in a model. The engineer
sends the model to the centralized coordinator and triggers its execution. Note
that this coordinator is central only with respect to the involved PLCs and not
with respect to the overall shop floor. Communication between PLCs occurs
indirectly via the centralized coordinator. Production processes with time crit-
ical invocation sequences require locating the centralized coordinator close to
the involved machines, respectively, PLCs, and/or communication over appro-
priate network infrastructure such as TSN (time-sensitive networking). Based
on BASE, we make the following observations:
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Behavior: An engineer specifies product-specific changes as changes to the
production process model. The centralized coordinator’s capabilities determine
whether an updated process model replaces a currently active process wholesale,
or whether it applies only the differences. Two options exist to obtain different
behavior of machine-specific logic: On the one hand, choosing among different
existing behavior occurs via the production process by invoking different end-
points (e.g., for a different algorithm) or using different invocation parameters.
On the other hand, radically new functionality needs to be deployed to the PLC
via side-channels.

Asynchrony: While switching among pre-existing functionality at the machine-
specific level when triggered by the centralized controller is instantaneous, new
functionality requires shutting down the machine for the duration of deploying
new function blocks and making them available via the middleware. Such a shut-
down implies pausing the current product model at the centralized coordinator,
and thereby also potentially any other involved machine. However, scheduling
a updated production process model for execution at the centralized coordina-
tor upon completion of the currently running process are instantaneous. In-situ
changes to running processes may require longer when the process needs to reach
a certain stage before updating can safely occur. Changes to the production pro-
cess become necessary when an interface of the exposed endpoints is affected.
However, other machines, respectively PLCs, remain unaffected.

State: Product-specific state is managed in the centralized coordinator while
machine-specific state remains within the PLC-level middleware. Updating the
product-specific meta-model requires stopping the production, persisting the
state, transforming the persisted state to the new meta-model. Such an adap-
tation typically also requires updating the centralized coordinator but not the
machine-specific logic. Machine-specific state is represented by the underlying
physical state of the machine and hence readily obtainable via reading from the
PLC’s hardaware signal pins.

Execution Context: Wholesale replacing product-specific logic requires the
centralized coordinator to bring the current model to a safe state. A safe state
typically describes a situation where the involved machines equally reach a safe
state (e.g., idle) or require no input from the coordinator for the duration of
the adaptation. In-situ adaptation of the product-specific logic requires product
engineering know-how at which state fragments of the model can be updated
quickly enough before the coordinator will access them and given the constraints
among model fragments. Adaptation of the centralized coordinator itself requires
putting all PLCs in a safe state. Switching among pre-existing machine-specific
logic is only restricted by the machine-state, i.e., whether the desired invocation
of an endpoint is valid at that particular time, but remains independent of the
state of other machines. Adding new functionality at the machine-level typically
requires PLC shutdown and hence requires the centralized coordinator to reach
a save (product-specific) state first.

Suppose the machines from our motivating scenario are implemented accord-
ing to this reference architecture, the specific adaptation consequences are the
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following. Product-specific updates are straight forward implemented via the
model and loading this into the centralized coordinator. There is no differences
whether the update affects only the milling machine or also the robot arm as
neither machines maintain product-specific control software. Machine-specific
adaptations are limited to the machine-under-adaptation: updating the gripping
algorithm may not even require stopping the milling machine if sufficient time
remains to deploy the new algorithm on the robot’s PLC and bind it to the
endpoint in use by the centralized controller. Alternatively, the centralized con-
troller would bring the milling process to a save state and wait for continuation
once the robot arm becomes operational again. Even machine-specific changes
that affected multiple machines in Baseline Architecture become strongly de-
coupled. Switching to 5G on the milling machine, for example, would only affect
the communication between the milling machine and the centralized controller
(assuming that the controller supports this on the fly), but not the robot.

Overall, this architecture/approach is typically applied in the batch automa-
tion domain (e.g., pharma, food, beverages) where the product model is a so-
called recipe (e.g., recipe for producing aspirin) defined in ISA 88.5 The Central
Coordinator Architecture, however, is not limited to this standard.

5.3 61499 Architecture

The IEC 61499 standard (and hence this architecture’s name, Figure 4) defines
a mechanism for specifying and loading product and machine-specific logic in
the form of Function Blocks on the fly. To this end, each PLC hosts a run-time
environment (RTE) that executes configurations of function blocks including the
communication among function blocks across PLC boundaries. A central model
consisting of Function Blocks (algorithmic units for computation, signaling, I/O
control etc) and their wiring represent the product and machine-specific logic.
Any separation between these to types is implicit and depends on a respective
well designed model. While function blocks allow reuse and thus separation of
machine-specific functionality, the RTE makes no such distinction and merely
requires all logic (of all required function blocks) to be provided in an executable
format. The mapping procedure of function blocks across PLCs (and respective
RTEs) includes the automatic generation of communication proxies and hence
allows function blocks to transparently communicate across PLC boundaries.
Strasser et al. [5] describe an exemplary implementation of such an architecture.
The VMDA demonstrator, referred to in the scenario description, shows the
latest state-of-the-art realization of a shop floor by following 61499 Architecture.

Behavior: The 61499 standard defines the ability how to change, replace,
and rewire any function block on the fly.

Asynchrony: Given the finegrained adaptation capabilities, before adapta-
tion, the impact of the adaptation must be evaluated to specify safe condition
when to effect a change. Both changes in product and machine logic require

5 https://www.isa.org/templates/one-column.aspx?pageid=111294&productId=

116649



10 M. Mayrhofer, C. Mayr-Dorn, A. Zoitl, O. Guiza, G. Weichhart, A. Egyed

Fig. 3: Central Coordinator Archi-
tecture Fig. 4: 61499 Architecture

compilation to intermediate code and to transfer it to the PLC. The RTE’s
mechanisms for code transfer support transferring deltas thus, reducing network
load.

State: The RTE allows to employ algorithms for complete state transfer.
This transfer has to be planned in detail beforehand, together with the code
compilation. State required by dependent systems can be kept in memory until
the adaptation is complete. This is safely possible as IEC 61499 assumes that
physical states (positions, velocities, temperatures, ...) do not jump, thus do only
deviate little from one time step to the next.

Execution Context: With the RTE’s capabilities of replacing code at run-
time while keeping the state in memory (or, if necessary, updating state changes
based on estimates) there are no restrictions to adaptation, from the software
perspective. The planning of state transfer might become tedious, especially if
states are removed or added, but not infeasible. The main limitation is, that the
controlled system, the physical system, has to be in a safe state.

Without a clear, dedicated boundary between machine-specific and product-
specific logic, any kind of local adaptation are possible on the fly if the timing
permits, i.e., the change is completed before the change logic segment is ac-
cessed/used by the RTE again. Distributed changes such as switching to 5G
or updating product dimension requires to synchronize the changes application
on the milling machine and on the robot. Hence, adaptation planning requires
in-depth domain knowhow of the milling machine and the robot at product and
machine level to identify safe states.

5.4 Coordination Middleware Architecture

Having analysed the properties of these three architectures, we propose Co-
ordination Middleware Architecture depicted in Figure 5 as the next logical
evolution step towards more adaptability. Similar to the Central Coordinator
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Architecture, an engineer describes the product-specific logic in a central model
and subsequently assigns model fragments to various execution resources (i.e.,
the PLCs). In contrast to the 61499 Architecture, there exists a strict sepa-
ration of product-specific logic and machine-specific logic. A local middleware
on each PLC interprets the product model fragments and calls the respective
machine-specific code. The model fragments contain information for registering
itself at the “shopfloor service bus” (SSB), in essence a coordination middleware.
The SSB enables registering endpoints, subscribing to events, and dispatching
messages. The SSB is responsible for routing messages and events among the
participating PLCs. The local middleware obtains only local view of the overall
production process without insights into which other entities are involved as the
SSB is the only means for external communication. The SSB thereby constitutes
a powerful location for adaptation support due to strong decoupling of machines:
information mapping, message/event buffering, machine availability signalling,
fail-over handling, etc.

Behavior: Adapting Product-specific logic implies transferring any changes
from global model to local fragments. New functionality on machine level requires
either recompilation of the middleware, if using a hardcoded interpretation mid-
dleware, or transfer of the deltas, if using a RTE as in 61499 Architecture.

Asynchrony: Distributing updates to local product-specific logic fragments
occurs independently from changes to other fragments while the machine con-
tinue to produce. Introduction of new machine-specific code without downtime
is dependent on the capabilities of the middleware/RTE.

State: Product state needs to be persisted when adaption implies replacing a
complete product fragment during production. Alternatively, applying deltas to
the product model fragment preserves such state. For impact on machine-state,
see Central Coordinator Architecture.

Execution Context: Updating (or replacing) a process fragment requires
it to be in an safe state, i.e., where its not expected to react before the end
of the adaptation procedure. The SSB enables PLCs to deregister during non-
instantaneous adaptations or maintenance (both at product fragment level and
machine logic level). The SSB may then signal other participants to suspend,
involve a failover machine (e.g., use another robot), or it temporarily stores
events and messages until the adapting PLC becomes available again. This limits
the impact on other machines when a PLC needs to be shutdown for machine-
level adaptations.

The specific adaptation consequences for our motivating scenario are very
similar to Central Coordinator Architecture for machine-specific and product-
specific adaptations. With respect to product-logic adaptation: adaptations can
be effected on the fly. However, while distributed product-specific adaptations
such as different product dimensions requiring different gripping locations may
be distributed to machine and robot at different times, these adaptations have to
be made effective simultaneously which incurs coordination overhead. Machine-
specific distributed adaptation such as switching to 5G requires also the SSB
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seamlessly use that communication means, making the change transparent to
the robot.

5.5 Distributed Middleware Architecture

A further evolution of Coordination Middleware Architecture results in Dis-
tributed Middleware Architecture. It merges the strong separation of product-
specific and machine specific logic of the Central Coordinator Architecture with
the peer-to-peer communication and on-the-fly updating capabilities of the 61499
Architecture, without having a central communication bottleneck as in the Co-
ordination Middleware Architecture (see Figure 6. An SSB is often not feasible
due to performance reasons (latency, throughput) or infrastructure availability.
It effectively becomes distributed across the participating systems and integrated
in the local middleware there. This implies that participating systems need to
discover other participants, become aware of their role in the product-specific
model, subscribe for events, and track their availability. Consequently adap-
tation support such as message caching, fail-over, etc becomes more complex.
Given the similarities to the other architectures, the analysis with BASE yields
few differences.

Fig. 5: Coordination Middleware Ar-
chitecture

Fig. 6: Distributed Middleware Ar-
chitecture

Behavior: similar to Coordination Middleware Architecture

Asynchrony: similar to Coordination Middleware Architecture, despite the
fact, that there is no central, consistent view on the machine availability (for-
merly available at the SBB) but is maintained distributed and hence typically
only eventually consistent.

State: similar to Coordination Middleware Architecture.

Execution Context: similar to Coordination Middleware Architecture,
Adaptation that requires multiple model fragments to be simultaneously up-
dated for correct production requires a dedicated coordinator mechanism for the
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adaptations in sync. The middleware/coordinators now need to reach an agree-
ment when to adapt, rather than merely exposing an simple adaptation endpoint
for synchronization.

The adaptation implications for our motivating scenario are almost the same
as for the Coordination Middleware Architecture architecture. Here, machine-
specific distributed adaptation such as switching to 5G now requires all commu-
nicating parties to complete the switch at the same time.

5.6 Discussion

In the authoritative papers on the BASE framework [6], [7], highlight that Behav-
ior, Asynchrony, State, and Execution identify the central techniques for achiev-
ing adaptability: In CPPS separating product and machine specific logic enables
defining more precisely what should change, and how that can be changed while
keeping the (side) effects local, and managing machine state separate from prod-
uct(ion) state (see also [2]).

The two general strategies underlying these techniques are making bindings
adaptable and using explicit events or messages for communication. These ob-
servations also hold true in CPPS. Malleable bindings imply that machines and
robots are allocated to the individual production steps as late as possible, e.g.,
which robot instance maneuvers the product into and out of a particular milling
machine instance. In CPPS the physical world limits the bindings to physically
available machines, but having the flexibility at the software (architecture) level
enables for increased flexibility at the physical level, e.g., replacing a robot,
adding one to increase production pace, integrating autonomous transport vehi-
cles. Architectures 2 to 5 make such late binding possible. Architecture 2 allows
late binding of the machines to the production process steps, Architecture 3 ex-
plicitly focuses on the ability to change the bindings at runtime, Architecture
4 introduces an SSB with capabilities for dynamically routing messages to the
right endpoints, with Architecture 5 doing the same but in a distributed manner.

Similarly, events/message achieve strong decoupling among components. There
is no shared memory or tight binding. Events allow monitoring and thus provide
feedback on the system state, informing adaptation mechanisms when and where
to engage. Events further allow replaying, transforming, and enhancing to turn
systems interoperable, see architectures 4 and 5.

Maintaining a model of the system (product-specific and/or machine-specific)
is a key towards adaptability. Several approaches demonstrate the runtime adap-
tation based on linking a model, i.e., the system’s architecture with its imple-
mentation, e.g., [6], [8], [9].

Ultimately, what architecture to select depends on the desired level of adapt-
ability subject to the constraint of the physical properties of the production
process and involved machines. An injection molding machine typically will pro-
duce many similar parts before the molding form is exchanged (a slow procedure)
to produce a different product and thus has different requirements for run-time
adaptation compared to a laser cutter that potentially cuts out a different form
every time. A second selection criterion is whether the architecture meets the
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real-time requirements of two communicating machines. When two robots need
to interact to jointly lift a physical object, exchanging messages via an SSB in
Architecture D might not be able to deliver messages quickly enough.

6 Related Work

Software architecture research is an active topic in the cyber physical (produc-
tion) systems community. Ahmad and Babar [1] show that the last decades has
seen adoption of software development paradigms in robotics. As robots are a
specialisation of CPS, we expect a similar development for the CPS and CPPS
community. Pisching et al. [10] propose to use service-oriented architectures for
CPPS and define a layout for CPS to behave as services. Thramboulidis et al. [11]
investigate the usage of CPS as microservices. Others develop architectures, usu-
ally based on patterns studied well already in software architectures [12], [13].
Their goal is to improve the compatibility between components, there is only
little focus on runtime adaptation. None of the above works analysed considers
frequent software reconfiguration or in-situ adaptation. This is a topic heavily
investigated in the software architecture community. Several papers propose a
plethora of approaches with many of them being relevant to CPS.

Oreizy, Medvidovic and Taylor [2] gathered an extensive survey on existing
solutions and styles for flexible software. Michalik et al. [14] determine which
code needs to be updated on a system, based on software product lines. The
technology would be a key enabler for lot size one, yet it is left open how the
actual software update is executed. Holvoet, Weyns and Valckenaers [15] identify
patterns for delegate multi-agent systems that allow great reconfigurability at
the level of replacing and rewiring components. They are great visions for future
shopfloors, but might need several steps to be introduced in existing manu-
facturing environments. Fallah, Wolny and Wimmer [16] propose a framework
that uses SysML to model and execute a production process. Their approach
has a strong distinction between machines and machine operators, which we
consider hampering when it comes to mixed scenarios, where machines should
be replaced by humans or vice versa. Moreover, the tools of SysML are less
suited to model dynamic processes compared to e.g. BPMN or SBPM. Other
approaches introduce platform-specific “connectors” [17] or “bindings” [18] and
platform-independent coordination middleware. Prehofer and Zoitl [19] extend
this concept of platform-specific access layer (a.k.a. “thin controller”) with the
capability to receive control code at runtime. Though various architectures exist
for robotic systems [1], [20], CPPS go in scope beyond a single machine or robot
and hence have to satisfy stricter requirements [21], [22].

7 Conclusions

We motivated the need for architectural adaptability in cyber physical produc-
tion systems. Using the BASE framework, we showed how Behavior, Asynchrony,
State, and Execution aspects affect an architecture’s adaptability. We presented
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three existing and two novel architectures and discussed what makes them adapt-
able. While not the only architecture selection criterion, being aware of the limits
of adaptability of a particular architecture is of uttermost importance when de-
signing for future CPPS.

While this paper focused on the small scale interactions and adaptability
of a few machines (and/or robots) for production, the adaptability on higher
levels such as covering the complete shop floor are not very well understood
yet. Our next steps focus on investigating how architectural styles and patterns
apply for adapting at such higher-levels, especially in the presence of the various
architectures presented in this paper.
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